Abstract
We consider the problem of computing minimum geometric hitting sets in which, given a set of geometric objects and a set of points, the goal is to compute the smallest subset of points that hit all geometric objects. The problem is known to be strongly NP-hard even for simple geometric objects like unit disks in the plane. Therefore, unless P=NP, it is not possible to get Fully Polynomial Time Approximation Algorithms (FPTAS) for such problems. We give the first PTAS for this problem when the geometric objects are half-spaces in Re3 and when they are an r-admissible set regions in the plane (this includes pseudo-disks as they are 2-admissible). Quite surprisingly, our algorithm is a very simple local search algorithm which iterates over local improvements only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.