Abstract

Static information-flow analysis (especially taint-analysis) is a key technique in software security, computing where sensitive or untrusted data can propagate in a program. Points-to analysis is a fundamental static program analysis, computing what abstract objects a program expression may point to. In this work, we propose a deep unification of information-flow and points-to analysis. We observe that information-flow analysis is not a mere high-level client of points-to information, but it is indeed identical to points-to analysis on artificial abstract objects that represent different information sources. The very same algorithm can compute, simultaneously, two interlinked but separate results (points-to and information-flow values) with changes only to its initial conditions. The benefits of such a unification are manifold. We can use existing points-to analysis implementations, with virtually no modification (only minor additions of extra logic for sanitization) to compute information flow concepts, such as value tainting. The algorithmic enhancements of points-to analysis (e.g., different flavors of context sensitivity) can be applied transparently to information-flow analysis. Heavy engineering work on points-to analysis (e.g., handling of the reflection API for Java) applies to information-flow analysis without extra effort. We demonstrate the benefits in a realistic implementation that leverages the Doop points-to analysis framework (including its context-sensitivity and reflection analysis features) to provide an information-flow analysis with excellent precision (over 91%) and recall (over 99%) for standard Java information-flow benchmarks. The analysis comfortably scales to large, real-world Android applications, analyzing the Facebook Messenger app with more than 55 K classes in under 7 hours.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.