Abstract

Electrocatalysts with high activities toward multiple electrode reactions are scarce and therefore highly sought. Here, we investigate the electrocatalytic performance of the two-dimensional (2D) Pt5Se4 monolayer toward hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Our density functional theory calculations show that the Pt5Se4 monolayer can serve as a low-Pt-loading trifunctional electrocatalyst with good kinetic and thermal stabilities. Specifically, the HER performance of the Pt5Se4 basal plane is predicted to be superior to that of 2D layered Pd or Pt dichalcogenides. Even considering the solvent effect, the catalytic OER performance of the Pt5Se4 monolayer is predicted to be comparable to the prevalent OER catalyst-IrO2, while the catalytic ORR performance of the Pt5Se4 monolayer is even higher than the predominating Pt(111) surface. Overall, the Pt5Se4 monolayer can be a promising trifunctional catalyst that exhibits high activities toward all hydrogen and oxygen electrode reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.