Abstract

The electrochemical nitrogen reduction reaction (NRR) using clean energy is considered a promising alternative to the conventional Haber–Bosch process; however, developing a highly active electrocatalyst is still a great challenge. In this study, ten metal dimers anchored in a defective boron nitride (BN) monolayer as double-atom catalysts (DACs) with reverse sandwich structures were screened for their stability and catalytic activity towards NRR by density functional theory (DFT) calculations. Among them, three DACs (Rh2⊥vb-BN, Pt2⊥vb-BN and Rh2⊥vn-BN) were confirmed to be stable and have high promise as NRR electrocatalysts, and Pt2⊥vb-BN particularly distinguishes itself due to its very low limiting potential (−0.06 V). In addition, the electrocatalytic performance of all three DACs prevailed over that of their single-atom catalyst counterparts. We believe that the unique conformation of the reverse sandwich structure has impressive potential for the development of DACs, and we hope that our study provides a new design strategy for DACs for NRR and beyond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call