Abstract

We report the promoting effect of Zn on performance of Pt-based catalyst in liquid-phase hydrogenation of 3-nitrostyrene (3-NS) to 3-vinylaniline (3-VA). Bimetallic Pt–Zn nanoparticles (NPs) were prepared within the hypercross-linked polystyrene (HPS) support. The nanoporous structure of HPS allows a size control of Pt–Zn NPs by confining them in the cavities (ca. 4–5nm) of the polymeric matrix. The TEM analysis showed that the mean size of the resulted metal particles (4.7nm) corresponds to the HPS pore size. The properties of the bimetallic catalyst were assessed by IR spectroscopy of chemisorbed CO that suggested the modification of Pt surface and electronic structure invoked by Zn incorporation. The catalytic results demonstrated an increased yield of 3-VA over Pt–Zn/HPS catalyst (97%) relative to monometallic Pt/HPS (16%). This is the highest result reported over Pt catalysts for NS hydrogenation without any additional reaction modifiers. Furthermore, stability of Pt–Zn/HPS under reaction conditions was confirmed over repeated reaction runs. Our results demonstrate the Pt modification with Zn as efficient means to control 3-VA selectivity, whereas HPS serves as a suitable support to control NP size and avoid metal leaching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.