Abstract

Pt/Ti/SiO2/Si structures have been studied to investigate the structural, chemical, and microstructural changes that occur during annealing. Grain growth of the as-deposited Pt columns was observed after annealing at 650 °C, and extensive changes in the Pt microstructure were apparent following a 750 °C anneal for 20 min. In addition, two types of defects were identified on the surfaces of annealed substrates. Defect formation was retarded when the surface was covered with a ferroelectric film. Concurrent with the annealing-induced Pt microstructure changes, Ti from the adhesion layer between the Pt and the SiO2 migrated into the Pt layer and oxidized. It was shown with spectroscopic ellipsometry and Auger electron spectroscopy that for long annealing times, the titanium oxide layer can reach the Pt surface. Consequently, at the processing temperatures utilized in preparing many ferroelectric thin films, the substrate is not completely inert or immobile. The changes associated with Ti migration could be especially problematic in techniques that require the substrate to be heated prior to film deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.