Abstract
The short timescale spin dynamics in antiferromagnets is an attractive feature from the standpoint of ultrafast spintronics. Yet generating highly polarized spin current at room temperature remains a fundamental challenge for antiferromagnets. We propose a spin circular photogalvanic effect (spin CPGE), in which circularly polarized light can produce a highly spin-polarized current at room temperature, through an "injection-current-like" mechanism in parity-time (PT)-symmetric antiferromagnetic (AFM) insulators. We demonstrate this effect by first-principles simulations of bilayer CrI_{3} and room-temperature-AFM hematite. The spin CPGE is significant, and the magnitude of spin photocurrent is comparable with the widely observed charge photocurrent in ferroelectric materials. Interestingly, this spin photocurrent is not sensitive to spin-orbit interactions, which were regarded as fundamental mechanisms for generating spin current. Given the fast response of light-matter interactions, large energy scale, and insensitivity to spin-orbit interactions, our work gives hope to realizing fast-dynamic and temperature-robust pure spin current in a wide range of PT-symmetric AFM materials, including topological axion insulators and weak-relativistic magnetic insulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.