Abstract

We study a non-Hermitian version of the Rabi model, where a two-level system is periodically driven with an imaginary-valued drive strength, leading to alternating gain and loss. In the Floquet picture, the model exhibits PT symmetry, which can be broken when the drive is sufficiently strong. We derive the boundaries of the PT phase diagram for the different resonances by doing perturbation theory beyond the rotating-wave approximation. For the main resonance, we show that the non-Hermitian analog of the Bloch-Siegert shift corresponds to maximal PT-breaking. For the higher-order resonances, we capture the boundaries to lowest order. We also solve the regime of high frequency by mapping to the Wannier-Stark ladder. Our model can be experimentally realized in waveguides with spatially-modulated loss or in atoms with time-modulated spontaneous decay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.