Abstract

Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, a highly active, durable, carbon supported, and monolayer Pt coated Pd-Co-Zn nanoparticle is synthesized via a simple impregnation-reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition-activity volcano curve for the Pd-Co-Zn nanoparticles and determined that Pd : Co : Zn = 8 : 1 : 1 is the optimal composition. Compared with pure Pd/C, the Pd8CoZn/C nanoparticles show a substantial enhancement in both the catalytic activity and the durability toward the ORR. Moreover, the durability and activity are further enhanced by forming a Pt skin on Pd8CoZn/C nanocatalysts. Interestingly, after 10 000 potential cycles in N2-saturated 0.1 M HClO4 solution, Pd8CoZn@Pt/C shows improved mass activity (2.62 A mg(-1)Pt) and specific activity (4.76 A m(-2)total), which are about 1.4 and 4.4 times higher than the initial values, and 37.4 and 5.5 times higher than those of Pt/C catalysts, respectively. After accelerated stability testing in O2-saturated 0.1 M HClO4 solution for 30 000 potential cycles, the half-wave potential negatively shifts about 6 mV. The results show that the Pt skin plays an important role in enhancing the activity as well as preventing degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.