Abstract

Achieving high atomic utilization and low cost of desirable Pt/TiO2 catalysts is a major challenge for room temperature HCHO oxidation. Here, the strategy of anchoring stable Pt single atoms by abundant oxygen vacancies over TiO2-nanosheet-assembled hierarchical spheres (Pt1/TiO2-HS) was designed to eliminate HCHO. A superior HCHO oxidation activity and CO2 yield (∼100% CO2 yield) at relative humidity (RH) > 50% over Pt1/TiO2-HS is achieved for long-term run. We attribute the excellent HCHO oxidation performance to the stable isolated Pt single atoms anchored on the defective TiO2-HS surface. The Ptδ+ on the Pt1/TiO2-HS surface has a facile intense electron transfer with the support by forming Pt-O-Ti linkages, driving HCHO oxidation effectively. Further in situ HCHO-DRIFTS revealed that the dioxymethylene (DOM) and HCOOH/HCOO- intermediates were further degraded via active OH- and adsorbed oxygen on the Pt1/TiO2-HS surface, respectively. This work may pave the way for the next generation of advanced catalytic materials for high-efficiency catalytic HCHO oxidation at room temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call