Abstract

Exploring effective synthetic protocols for electrocatalysts of the oxygen reduction reaction (ORR) is vital to the practical application of alkaline fuel cells. Herein, a high-temperature shock (HTS) method is used to synthesize Pt–Ni alloy nanoparticles with various Pt/Ni ratios on a carbon support. The shock is provided by the Joule effect of current passing through the carbon paper. The ultrafast quenching process after the second-long current endows the as-synthesized alloy with an adjustable size and kinetically trapped dislocation features, which provides a degree of structure tuning toward electrocatalysts with improved ORR performance. Among the series of catalysts with various compositions, catalysts with a Pt/Ni ratio of 1 display a half-wave potential of 0.9 VRHE with a corresponding specific activity of 0.87 mA cm–2, roughly 6-fold that of the commercial Pt/C catalyst. The half-wave potential shows a limited negative shift after 5000 cycles of the durability test, proving the feasibility of fabricating carbon-supported Pt alloy catalysts from HTS with remarkable ORR activity and stability. The influence of composition and strain on the performance is investigated by the density-functional theory calculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.