Abstract
Understanding how nanostructure and atomic-scale defects of the support affect metal catalyst nanoparticle sintering is of crucial importance to minimize thermal deactivation, as well as to understand the origin of widely observed but still unexplained phenomena, such as transient multimodal particle size distributions and nanoparticle redispersion. To shed light on these issues, we present a generic experimental approach that relies on nanofabrication to introduce controlled structural heterogeneity in a chemically homogeneous model catalyst support. This is achieved by fabricating arrays of nanocone structures separated by flat areas, where both are homogeneously sputter-coated with a thin amorphous alumina layer. Using ex situ aberration-corrected scanning transmission electron microscopy (STEM) to analyze Pt model catalyst nanoparticles on such nanostructured supports prior and after exposure to 4% O2 in Ar carrier gas at 600 °C, we find that the initial particle size distributions and their time evol...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.