Abstract
A class of conducting reduced graphene oxide hydrogels is prepared with various porosities, surface areas, and electrical conductivities using ethylenediamine (EDA)/functionalized graphene oxide (GO) and ascorbic acid (VC)/GO by hydrothermal method. The microstructure of hydrogels is tailored by changing the composition of materials. It is observed that the conducing network is formed by cross-linked graphene platelets, and the piezoresistive behavior of hydrogels under cyclic compressive strain shows a linear trend up to 6.8% strain when the hydrogel is prepared by adding 5 wt % of EDA in aqueous GO solution. In addition, platinum nanoparticle-decorated (Pt NP-decorated) EDA-GO hydrogel was also prepared, showing greatly improved linear strain range as high as 52.8% with an increase in compressive modulus by 873% because of the multiscale reinforcing mechanism, which is attributed to the strong interaction between Pt NPs and graphene platelets. The piezoresistivity of the hydrogels can be of great intere...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.