Abstract

Tetradentate bis(pyridyl azolate) chelates are assembled by connecting two bidentate 3-trifluoromethyl-5-(2-pyridyl)azoles at the six position of pyridyl fragment with the tailored spiro-arranged fluorene and/or acridine functionalities. These new chelates were then utilized in synthesizing a series of Pt(II) metal complexes [Pt(Ln)], n = 1-5, from respective chelates L1-L5 and [PtCl2(DMSO)2] in 1,2-dimethoxyethane. The single-crystal X-ray structural analyses were executed on 1, 3, and 5 to reveal the generalized structures and packing arrangement in crystal lattices. Their photophysical properties were measured in both solution and solid state and are discussed in the context of computational analysis. These L1-L5 coordinated Pt(II) species exhibit intense emission, among which complex 5 shows remarkable solvatochromic phosphorescence due to the dominant intraligand charge transfer transition induced by the new bis(pyridyl azolate) chelates. Moreover, because of the higher-lying highest occupied molecular orbital of acridine, complex 5 can be considered as a novel bipolar phosphor. Successful fabrication of blue and white organic light-emitting diodes (OLEDs) using Pt(II) complexes 3 and 5 as the phosphorescent dopants are reported. In particular, blue OLEDs with 5 demonstrated peak efficiencies of 15.3% (36.3 cd/A, 38.0 lm/W), and CIE values of (0.190, 0.342) in a double-emitting layer structure. Furthermore, a red-emitting Os(II) complex and 5 were used to fabricate warm-white OLEDs to achieve peak external quantum efficiency, luminance efficiency, and power efficiency values as high as 12.7%, 22.5 cd/A, and 22.1 lm/W, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.