Abstract

Eluding apoptosis represents the hallmark of tumoral cell behavior. Cisplatin (CisPt) is a very common chemotherapeutic agent to treat cancer by reestablishing apoptotic mechanisms of cell death. However, certain patients acquire resistance to CisPt as well as suffer nephrotoxicity, neurotoxicity, nausea and vomiting. The synthesis of new Pt(II) compounds represents an alternative to CisPt to avoid resistance and undesirable side effects. Pd(II) could be a Pt(II) surrogate given the similarity of coordination chemistry between them, thus widening the spectra of available anticancer drugs. Herein, we have synthesized and characterized two Pt(II) or Pd(II) complexes with TdTn (2-(3,4-dichlorophenyl)imino-N-(2-thiazolin-2-yl)thiazolidine), a thiazoline derivative ligand, with formula [PtCl2(TdTn)] and [PdCl2(TdTn)]. The potential anticancer ability was evaluated in human colon adenocarcinoma HT-29 and human histiocytic lymphoma U-937 cell lines. To that aim, U-937 and HT-29 cells were treated with TdTn, [PtCl2(TdTn)] and [PdCl2(TdTn)] for 24 h. The microscopy monitoring indicated that TdTn, [PtCl2(TdTn)] and [PdCl2(TdTn)] arrested the cell proliferation of U-937 and HT-29 cells with respect to control, in agreement with MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) analysis. Moreover, it is noteworthy that the ligand by its own showed antiproliferative effects in both cell lines. [PtCl2(TdTn)] and [PdCl2(TdTn)] caused caspase-3 activation in U-937 cells, simultaneously with caspase-9 activation due to complexes; however, in HT-29 caspase-3 activation occurred simultaneously with caspase-8 activation induced by the ligand TdTn. Only metal complexes were able to induce ROS (Reactive Oxygen Species) generation in U-937 cells, but not TdTn. In HT-29 cells neither the metal complexes, nor the ligand induced ROS generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call