Abstract
Functionalization by noble metal catalysts and the construction of heterojunctions are two effective methods to enhance the gas sensing performance of metal oxide-based sensors. In this work, we adopt the porous ZIF-8 as a catalyst substrate to encapsulate the ultra-small Pt nanoparticles. The Pt/ZnO-In2O3 hollow nanofibers derived from Pt/ZIF-8 were prepared by a facile electrospinning method. The 25PtZI HNFs sensor possessed a response value of 48.3 to 100 ppm HCHO, 2.7 times higher than the pristine In2O3, along with rapid response/recovery time (5/22 s), and lower theoretical detection limit (74.6 ppb). The improved sensing properties can be attributed to the synergistic effects of electron sensitization effects and catalytic effects of Pt nanoparticles, and the high surface O− absorbing capability of heterojunctions. The present study paves a new way to design high performance formaldehyde gas sensors in practical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.