Abstract

Proton exchange membrane (PEM) fuel cells using Pt-based materials as electrocatalysts have achieved a decent performance, represented by the launched Toyota Mirai vehicle. The ideal PEM fuel cells consume stored pure hydrogen and air. However, SO2, as a primary air contaminant, may be fed along with air at the cathode, leading to Pt site deactivation. Therefore, it is important to improve the SO2 tolerance of catalysts for the stability of the oxygen reduction reaction (ORR). In this work, we develop the Pt/C-TiO2 catalyst against SO2 poisoning during ORR. Impressively, the hybrid Pt/C-TiO2 catalyst with 20 mass % TiO2 shows the best ORR and anti-toxic performance: the kinetic current density of ORR is 20.5% higher and the degradation rate after poisoning is 50% lower than Pt/C. The interaction between Pt and TiO2 as well as the abundant hydroxyl groups on the surface of TiO2 are both revealed to account for the accelerated removal of poisonous SO2 on Pt surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.