Abstract

For boosting oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs), a new type of multi-functional catalyst with high activity, high stability, and low cost has been designed and prepared by introducing high proportions of M (M = Fe, Ni) metals in Pt-based nanoparticles through a microwave-assisted polyol method, followed by thermal annealing process. A uniform dispersion of nanoparticles (5 nm) and a face-centered tetragonal (fct) phase improve the activity and stability of the Pt–Fe–Ni/C catalyst. Owing to differences in the surface energies of the alloying elements, Pt atoms with low surface energy have a tendency to segregate from the subsurface to the surface during the annealing. This tendency exposes the internal Pt atoms to the surface of the nanoparticles in the existence of high proportions of M metals, significantly improving the utilization of Pt. As a cathode catalyst, the Pt–Fe–Ni/C catalyst annealed at 675 °C with a mass activity of 0.73 A/mgPt, which is 3.5 times higher than that of the commercial Pt/C catalyst, exhibits an excellent half-cell performance. An accelerated durability test demonstrates that the prepared Pt–Fe–Ni/C-675 catalyst is more stable than the commercial Pt/C. The proposed multi-functional catalyst has great potential for PEMFCs and other applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call