Abstract
A single spin-rotational state-selected [(J,M)=(2,2)] O2 beam allows us to conduct a spin- and alignment -controlled O2 chemisorption experiment. We have recently expanded its available translational energy range to 0.1-0.9 eV. In this study, the beam has been used for the analysis of O2 chemisorption on Pt(111). Although this system has been investigated intensively due to its technological importance, the origin of the low O2 sticking probability and its unusual energy dependence has remained unclear. The present results indicate that, at low translational energy (E0) conditions, direct activated chemisorption occurs only when the O2 axis is nearly parallel to the surface. At high energy conditions (E0>0.5 eV), however, the sticking probability for the parallel O2 decreases with E0 while that of the perpendicular O2 increases, accounting for the nearly energy-independent O2 sticking probability determined previously by a randomly oriented O2 beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.