Abstract

To render tactile cues on a touchscreen by friction modulation, it is important to understand how humans perceive a change in friction. In this study, we investigate the relations between perceived change in friction on an ultrasonically actuated touchscreen and parameters involved in contact between finger and its surface. We first estimate the perceptual thresholds to detect rising and falling friction while a finger is sliding on the touch surface. Then, we conduct intensity scaling experiments and investigate the effect of finger sliding velocity, normal force, and rise/fall time of vibration amplitude (transition time) on the perceived intensity of change in friction. In order to better understand the role of contact mechanics, we also look into the correlations between the perceived intensities of subjects and several parameters involved in contact. The results of our experiments show that the contrast and rate of change in tangential force were best correlated with the perceived intensity. The subjects perceived rising friction more strongly than falling friction, particularly at higher tangential force contrast. We argue that this is due to hysteresis and viscoelastic behavior of fingertip under tangential loading. The results also showed that transition time and normal force have significant effect on our tactile perception.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call