Abstract

Signal detection theoretical analyses of spike counts have revealed that some cortical neurons can exceed psychophysical sensitivity in cases where a sensory signal is specified exactly. It is not known whether this finding holds in the more natural situation where signal occurrence is temporally uncertain. We investigated the ability of rat barrel cortex neurons to detect faint and transient whisker deflections occurring at unspecified times. The progression from fully specified stimuli to temporal uncertainty degraded neuronal sensitivity such that it seems highly unlikely that single neurons can provide the basis for decoding uncertain perceptual events. However, modeling the sensitivity of neuronal pools on basis of spike timing precision across several neurons in an optimal encoding window of 25 ms showed that the subject's perceptual sensitivity could be based on the occurrence of coincident spikes from four to five neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.