Abstract

Psychosocial stress is increasing, causing a growing number of people to suffer from hair loss. Stress-related corticotropin-releasing hormone (CRH) is associated with hair loss, but the mechanism by which hair follicles respond to stress and CRH remain poorly understood. The aim of the study is to elucidate the association between CRH and stress-related hair regenerative disorders, and reveal the potential pathological mechanisms. A chronic unpredictable stress mouse model and a chronic social defeat stress mouse model were used to examine the role of CRH and stress-related hair regrowth. Chronic unpredictable stress and chronic social defeat stress increased the expression of CRH and CRH receptors (CRHRs), and contributed to the onset of hair-cycle abnormalities. Psychoemotional stress and stress-related CRH blocked hair follicle regrowth, which could be restored by astressin, a CRHR antagonist. Long-term exposure to either chronic unpredictable stress or CRH induced a decrease in autophagy, which could be partially rescued by astressin. Activating CRHR, by stress or CRH administration, decreased autophagy via the mTOR-ULK1 signaling pathway to mediate hair regenerative disorders, which could be partially reversed through enhancing autophagy by administration of brefeldin A. These findings indicate that CRH-mediated autophagy inhibition play an important role in stress-induced hair regenerative disorders. CRH regulates the local hypothalamic-pituitary-adrenal axis of hair follicles, but also plays an independent pathogenic role in stress-related hair regenerative disorders through CRH-mediated autophagy inhibition. This work contributes to the present understanding of hair loss and suggests that enhancing autophagy may have a therapeutic effect on stress-induced hair loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call