Abstract

Brain-Computer Interfaces (BCIs) provide communication channels independent from muscular control. In the current study we used two versions of the P300-BCI: one based on visual the other on auditory stimulation. Up to now, data on the impact of psychological variables on P300-BCI control are scarce. Hence, our goal was to identify new predictors with a comprehensive psychological test-battery. A total of N = 40 healthy BCI novices took part in a visual and an auditory BCI session. Psychological variables were measured with an electronic test-battery including clinical, personality, and performance tests. The personality factor “emotional stability” was negatively correlated (Spearman's rho = −0.416; p < 0.01) and an output variable of the non-verbal learning test (NVLT), which can be interpreted as ability to learn, correlated positively (Spearman's rho = 0.412; p < 0.01) with visual P300-BCI performance. In a linear regression analysis both independent variables explained 24% of the variance. “Emotional stability” was also negatively related to auditory P300-BCI performance (Spearman's rho = −0.377; p < 0.05), but failed significance in the regression analysis. Psychological parameters seem to play a moderate role in visual P300-BCI performance. “Emotional stability” was identified as a new predictor, indicating that BCI users who characterize themselves as calm and rational showed worse BCI performance. The positive relation of the ability to learn and BCI performance corroborates the notion that also for P300 based BCIs learning may constitute an important factor. Further studies are needed to consolidate or reject the presented predictors.

Highlights

  • Brain-Computer Interfaces (BCI) translate intentions into operational commands for technical devices or communication systems without requiring any motor action

  • All further predictor analyses were conducted with the reanalysed data

  • Albeit we found an effect of two psychological variables on P300-BCI performance, none of the psychological variables were related to the amplitude and latency of the P300

Read more

Summary

Introduction

Brain-Computer Interfaces (BCI) translate intentions into operational commands for technical devices or communication systems without requiring any motor action. The ERP P300 is characterized by a positive deflection in the EEG around 300 ms after stimulus onset on central to parietal locations (Polich, 2007) and is elicited by rare deviant stimuli during a stream of frequent standard stimuli, often described as Psychological Predictors of P300 Brain-Computer Interface oddball paradigm (Fabiani et al, 1987). Most P300-BCIs are based on vision; the so-called visual P300 speller was first described by Farwell and Donchin (1988). They presented to their participants a 6 × 6 matrix of characters. For a detailed description of the visual speller (see e.g., Sellers et al, 2012)

Objectives
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.