Abstract
Abstract In this study, we evaluated the potential of supplementing weaning diets with spray dried porcine plasma, dried porcine intestinal hydrolysates or bovine colostrum to modulate piglet growth, intestinal morphology, antioxidant status, and immunity. At weaning, 96 piglets were housed three piglets per pen in 32 pens. Each pen was assigned to one of the following dietary treatments: 1) basal diet (CTRL); 2) basal diet containing spray dried porcine plasma at 50 g/kg feed (PP); 3) basal diet containing dried porcine intestinal hydrolysates at 50 g/kg feed (PIH); 4) basal diet containing bovine colostrum at 50 g/kg feed (BC). At d 0 and 14, piglets were weighed and feed intake was daily recorded. Eight pigs per treatment (one per pen) were euthanized at d 14 and intestinal samples were collected to evaluate the antioxidant status, intestinal morphology and concentration of TNFα, interleukin (IL) 4, IL17, occludin, caspase 3 and proliferating cell nuclear antigen. Our results showed that PP and BC supplementation increased the final weight and G:F ratio compared with the other dietary treatments, whereas the ADG was greater in the BC group compared with PIH animals (P< 0.05). Furthermore, feeding pigs with the PP diet partially affected the intestinal antioxidant status, as evidenced by the increased concentration of glutathione peroxidase compared with the BC group (P< 0.05). BC supplementation also increased intestinal villus height compared with CTRL and PIH animals, as well as villus to crypt ratio compared with the CTRL group (P< 0.05). No other dietary effect on immunity or intestinal morphology was recorded. This study highlights the potential of dietary supplementation, such as plasma proteins and bovine colostrum, to act as a valid alternative to in-feed antibiotics, to reduce effect of weaning stress and maintain gut health and performance in in the post-weaning period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.