Abstract

Abstract The effects of hay type and protein supplementation on intake, feeding behavior, nutrient digestion, and ruminal digestion characteristics were evaluated. Ruminally cannulated Angus beef steers (n = 6; BW = 304 kg ± 11 kg) were randomly assigned within a sequence of treatments using a 4 × 6 unbalanced Latin square design (6 steers; and 4 diets; fed once-daily). A 2 x 2 factorial treatment arrangement was used as follows: 1) ‘WW-B. Dahl’ Old World bluestem [Bothriochloa bladhii (Retz) S.T. Blake; WWBD or Eragrostis tef (Zucc.) Trotter; TEFF); and 2) dried distillers grain (DDGS) at 0 or 0.5% BW. Each period consisted of a 14-d of adaptation and 7-d collection. Steers were observed (5-min intervals, 24 h) for behavioral assessment; while ruminal pH was continuously measured (wireless pH probe), and ruminal fluid collected at 0, 2, 4, 8, and 16 h after-feeding. Steers fed TEFF hay and those fed DDGS (both, P = 0.04) had greater DMI compared to WWBD and not supplemented. Chewing activity did not differ (P ≥ 0.54). Non-supplemented steers spent more time eating hay (P < 0.01) than supplemented steers. Average ruminal pH of TEFF (6.32) was lower (P > 0.01) than WWBD (6.56). Non-supplemented steers produced less in vitro total gas and methane (both, P = 0.02) per g rumen fluid DM. The VFA profile was not affected (P ≥ 0.45) by treatments. Apparent total-tract digestibility and ruminal degradation (P ≤ 0.01) were greater with TEFF fed steers than WWBD. Hemicellulose digestion was reduced by 6.95% (P = 0.03) with DDGS supplementation. An annual hay in place of a conventional perennial hay improved intake, ruminal digestion of nutrients, without affecting feeding behavior, while supplementation with DDGS reduced forage intake time and quantity, without negatively affecting ruminal fiber digestion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.