Abstract
Abstract L-α-amino butyrate is a low-molecular weight thiol compound that acts to increase the levels of glutathione in the oocyte. Glutathione acts as an antioxidant during oocyte maturation and promotes male pronuclear formation during fertilization. Supplementing the L-α-amino butyrate helps to decrease polyspermic penetration rates and improve early embryonic development in swine. However, it is unknown if L-α-amino butyrate supplementation affects the environment of the oocyte or the oocyte directly. Therefore, the objective of this study was to determine if L-α-amino butyrate supplementation to the maturation media acted on the oocyte or had alternative beneficial effects in the surrounding environment. Oocytes were randomly assigned to a maturation media containing an amino acid transport inhibitor, quisqualic acid (QA) (0 or 1 mM) and then supplemented with L-α-amino butyrate (0 or 3.3 mM). Oocytes were evaluated for stage of meiosis (n=380) and cumulus cell expansion (n=411) at the end of maturation. The remaining oocytes were fertilized and evaluated for cortical granule exocytosis (n=400) and IVF kinetics (n=456). Supplementation of L-α-amino butyrate with or without QA significantly increased (P < 0.05) cumulus cell expansion, cortical granule exocytosis and male pronuclear formation compared to no supplementation or QA supplementation. There was no difference in meiotic progression, fertilization or polyspermic penetration rates between the treatment groups. Results suggest that when L-α-amino butyrate is supplemented during maturation, it improves the maturation of the oocyte by acting directly on the oocyte and not through the surrounding environment of the oocyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.