Abstract

Polythiophene/poly(sodium 4-styrene sulfonate) (PT/PSS) composite nanoparticles having different particle size were prepared by Fe(3+)-catalyzed oxidative polymerization in aqueous medium. This facile method includes a FeCl3/H2O2 (catalyst/oxidant) combination system, which guarantees a high conversion (more than 95%) of thiophene monomers in various concentration of poly(styrene sulfonate) (PSS) with only a trace of FeCl3. Particle size of PT/PSS composite nanoparticles decreased from 134 nm to 26 nm as the concentration of PSS and H2O2 increased, and which was confirmed by SEM and CHDF analyses. The poly(ethylene terephthalate) (PET) film coated with PT/PSS was transparent and showed a high conductivity in a dried state. The sheet resistivity decreased as the ratio of PT to PSS increased. Photoluminescence property of the PT/PSS composite nanoparticles was also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.