Abstract

The PSpice software has been used to simulate the electrical characteristics of a one atmosphere uniform glow discharge plasma (OAUGDP) reactor system. An OAUGDP reactor system normally includes a power supply, a transformer, an impedance matching network, and the plasma reactor. The principal task in simulation is to develop a comprehensive PSpice model for the plasma discharge in an OAUGDP reactor, which may consist either of two parallel electrode plates with a small gap between them, or a planar plasma layer generated by coplanar parallel electrode strips. In an OAUGDP, at least one electrode is covered with a dielectric, which can be modeled as a capacitor, as can the gap containing the plasma. The plasma discharge itself is modeled as a voltage-controlled current source that is switched on when the voltage across the gap exceeds the plasma initiation voltage. The current source and its output current follow a power law of the applied voltage, an observed phenomenological characteristic of the voltage-current behavior of normal glow discharges. Simulation results agree well with experimental data from actual reactors. It has been found that in different operating regimes, the discharge current of the OAUGDP is described by voltage power laws with different exponents, and that the capacitance of the impedance matching network affects the shape of the modeled discharge current waveform in a manner consistent with experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call