Abstract

Capacitive microfabricated ultrasonic transducers (cMUTs) are the newest and potentially the most promising devices to convert electrical into acoustic signals and vice-versa. These devices are based on the capacitance modulation of a microcondenser which is obtained by microfabrication onto a silicon substrate. The aim of this paper is to describe a PSpice model of the cMUT, based on an analytical distributed model previously reported (IEEE Trans. UFFC 49 (2) (2002) 159–168), which can be used to simulate the performances of a general ultrasound system, either in frequency or time domain. The PSpice model consists of a capacitor with a parallel resistor, which represent the static capacitance and the loss and bias resistances of the transducer, respectively, plus two quadrupoles (GLAPLACE) modeling the mechanical impedance of the membranes and the radiation impedance of the medium. The usefulness of a PSpice model is the possibility to simulate and optimize the cMUT transducers in transmission and reception, along with driving and receiving electronics, in a general ultrasound system. Experimental measurements on a 5 MHz cMUT operating in pulse-echo are in good agreement with model predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.