Abstract

ObjectivePsoriasis is a chronic inflammatory skin disease that is thought to affect ∼2% of the global population. Psoriasis has been associated with ∼30% increased risk of developing type 2 diabetes (T2D), with numerous studies reporting that psoriasis is an independent risk-factor for T2D, separate from underlying obesity. Separately, studies of skin-specific transgenic mice have reported altered whole-body glucose homeostasis in these models. These studies imply a direct role for skin inflammation and dysfunction in mediating the onset of T2D in psoriasis patients, potentially via the endocrine effects of the skin secretome on key metabolic tissues. We used a combination of in vivo and ex vivo mouse models and ex vivo human imiquimod (IMQ) models to investigate the effects of psoriasis-mediated changes in the skin secretome on whole-body metabolic function. MethodsTo induce psoriatic skin inflammation, mice were topically administered 75 mg of 5% IMQ cream (or Vaseline control) to a shaved dorsal region for 4 consecutive days. On day 5, mice were fasted for glucose and insulin tolerance testing, or sacrificed in the fed state with blood and tissues collected for analysis. To determine effects of the skin secretome, mouse skin was collected at day 5 from IMQ mice and cultured for 24 h. Conditioned media (CM) was collected and used 1:1 with fresh media to treat mouse explant subcutaneous adipose tissue (sAT) and isolated pancreatic islets. For human CM experiments, human skin was exposed to 5% IMQ cream for 20 min, ex vivo, to induce a psoriatic phenotype, then cultured for 24 h. CM was collected, combined 1:1 with fresh media and used to treat human sAT ex vivo. Markers of tissue inflammation and metabolic function were determined by qPCR. Beta cell function in isolated islets was measured by dynamic insulin secretion. Beta-cell proliferation was determined by measurement of Ki67 immunofluorescence histochemistry and BrDU uptake, whilst islet apoptosis was assessed by caspase 3/7 activity. All data is expressed as mean ± SEM. ResultsTopical treatment with IMQ induced a psoriatic-like phenotype in mouse skin, evidenced by thickening, erythema and inflammation of the skin. Topical IMQ treatment induced inflammation and signs of metabolic dysfunction in sub-cutaneous and epidydimal adipose tissue, liver, skeletal muscle and gut tissue. However, consistent with islet compensation and a pre-diabetic phenotype, IMQ mice displayed improved glucose tolerance, increased insulin and c-peptide response to glucose, and increased beta cell proliferation. Treatment of sAT with psoriatic mouse or human skin-CM replicated the in vivo phenotype, leading to increased inflammation and metabolic dysfunction in mouse and human sAT. Treatment of pancreatic islets with psoriatic mouse skin-CM induced increases in beta-proliferation and apoptosis, thus partially replicating the in vivo phenotype. ConclusionsPsoriasis-like skin inflammation induces a pre-diabetic phenotype, characterised by tissue inflammation and markers of metabolic dysfunction, together with islet compensation in mice. The in vivo phenotype is partially replicated by exposure of sAT and pancreatic islets to psoriatic-skin conditioned media. These results support the hypothesis that psoriatic skin inflammation, potentially via the endocrine actions of the skin secretome, may constitute a novel pathophysiological pathway mediating the development of T2D.

Highlights

  • IntroductionStudies have reported that psoriasis is an independent risk-factor for type 2 diabetes (T2D) and insulin resistance, separate from underlying obesity, with the severity of psoriasis correlating with increased likelihood of developing T2D and the requirement of insulin therapy [5,8]

  • The skin is located adjacent to subcutaneous adipose tissue. sAT dysfunction plays a key role in the development of insulin resistance and type 2 diabetes (T2D) [15,25e28]. sAT is the largest and safest lipid storage depot in the body [29]

  • Topical IMQ induced an inflammatory phenotype in mouse skin To examine the metabolic effects of skin inflammation, we utilised the IMQ-mouse model

Read more

Summary

Introduction

Studies have reported that psoriasis is an independent risk-factor for T2D and insulin resistance, separate from underlying obesity, with the severity of psoriasis correlating with increased likelihood of developing T2D and the requirement of insulin therapy [5,8] These studies imply a direct role for skin inflammation in mediating the onset of psoriatic comorbidities. We have investigated whether skin-mediated sAT dysfunction constitutes a novel mechanism linking psoriasis with the development of comorbidities, including insulin resistance and T2D. To investigate the role of the skin-sAT axis in psoriasis-mediated development of insulin resistance and T2D, we utilised in vivo and ex vivo mouse models and ex vivo human imiquimod (IMQ) models. The mouse IMQ model is one of the most reliable and routinely used animal models of psoriasis [36e39], which has been adapted for use in human ex vivo skin

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.