Abstract

AimsPsoriasis is a refractory skin disease characterized by macrophage cell infiltrated in the dermal layer. Macrophages can simultaneously polarize into two distinct functional subtypes, M1 and M2, and this process is affected by the microenvironment, cytokines and JAK/STAT pathways. Formula PSORI-CM02 is a novel Chinese medicine used to alleviate psoriasis symptoms and regulate T cell differentiation and epithelial cell proliferation. However, the effects of PSORI-CM02 in imiquimod (IMQ)-induced psoriasis and macrophage infiltration and polarization in the dermis remain unknown. Main methodsImiquimod induced psoriasis mice model and M1/M2 polarization model on mice peritoneal macrophages cell line RAW264.7 in vitro were used to observe the therapeutic effect of PSORI-CM02 on skin and its molecular mechanisms. Key findingsPSORI-CM02 can significantly improve skin lesions and reduce macrophage infiltration in mice induced by imiquimod. After treatment with PSORI-CM02 formula, M1 macrophage mediators were significantly reduced, while M2 mediators were significantly increased in mice. Similarly in vitro, M1 macrophage proliferation was suppressed and M2 macrophage proliferation was elevated by PSORI-CM02 in the presence of LPS and IL-4, respectively. The elevated expression of TNF-α, iNOS, and IL-1β induced by LPS was reduced, while the expression of Arg-1, Fizz-1, Ym-1, and IL-10 induced by IL-4 was elevated in PSORI-CM02-treated cells. Finally, we found that the effects of PSORI-CM02 in macrophage polarization were associated with regulation of STAT1 and STAT6 expression, which were activated by LPS and IL-4, respectively. SignificanceOur novel findings reveal that PSORI-CM02 may possess therapeutic action in psoriasis treatment by regulating the infiltration and polarization of macrophages in the dermal layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.