Abstract

The chromatin structure of RNA polymerase I--transcribed ribosomal DNA (rDNA) is well characterized. In most organisms, i.e., lower eukaryotes, plants, and animals, only a fraction of ribosomal genes are transcriptionally active. At the chromatin level inactive rDNA is assembled into arrays of nucleosomes, whereas transcriptionally active rDNA does not contain canonical nucleosomes. To separate inactive (nucleosomal) and active (non-nucleosomal) rDNA, the technique of psoralen photocrosslinking has been used successfully both in vitro and in vivo. In Saccharomyces cerevisiae, the structure of rDNA chromatin has been particularly well studied during transcription and during DNA replication. Thus, the yeast rDNA locus has become a good model system to study the interplay of all nuclear DNA processes and chromatin. In this review we focused on the studies of chromatin in ribosomal genes and how these results have helped to address the fundamental question: What is the structure of chromatin in the coding regions of genes?

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.