Abstract

This paper aimed to investigate whether psoralen inhibits the differentiation and bone resorption by regulating CD4+T cell differentiation in RANKL-induced osteoclastogenesis in RAW264.7 cells, and elucidate its mechanism for osteoporosis. CD4+T cells were isolated from spleen cells of Balb/c mice by immunomagnetic separation method. The cells were divided into blank control group and psoralen group. The cells were cultured in 24-well plates and cultured for 3 days, and then they were collected for co-culture experiments after 4 days. Co-culture experiments were divided into RAW264.7 cell group, psoralen+RAW264.7 cell group, without psoralen treatment of CD4+T cells+RAW264.7 cell group, psoralen treatment of CD4+T cells+RAW264.7 cell group. After 5 days of co-culture, TRAP staining was used to detect the number of osteoclasts, and after 8 days of co-culture, bone resorption was evaluated by toluidine blue staining. The expressions of RORγt, Foxp3, IL-17, TNF-α, TGF-β and IL-10 in CD4+T cells and osteoclast differentiation-related genes MMP-9, TRAP and Cat-K were detected by Real-time polymerase chain reaction (RT-PCR); ELISA kit was used to detect IL-17, TNF-α, TGF-β and IL-10 and other cytokines levels. Our data confirmed that the psoralen significantly promoted the expression of Foxp3, TGF-β and IL-10 in CD4+T, and inhibited the expression of RORγt, IL-17 and TNF-α in CD4+T, the CD4+T cells without treatment by psoralen can significantly promote RANKL-induced differentiation of RAW264.7 to osteoclasts, and psoralen treatment of CD4+T can significantly inhibit RANKL-induced RAW264.7 osteoclast differentiation and bone resorption. Taken together, psoralen inhibits the differentiation and bone resorption of RAW264.7 into osteoclasts by promoting the development of CD4+ CD25+ Treg/Th17 balance in CD4+T cells to CD4+CD25+T.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.