Abstract

ABSTRACT Fuzzy inference method is applied to formulate an algorithm capable of estimating material elastic constants (ECs) of a specimen by solving an inverse problem with a group of measured resonance frequencies obtained via Resonant Ultrasound Spectroscopy (RUS). The algorithm is validated with RUS data from a specimen of polycrystalline aluminium alloy. Then the algorithm is found to be sensitive to the initial ECs by processing RUS data from a specimen of fine-grain polycrystalline Ti–6Al–4V, the same as the Levenberg–Marquardt (L–M) method popularly used in solving inverse problems. To overcome such a drawback, a hybrid method of Particle Swarm Optimization (PSO) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is proposed. And it is used to generate several groups of initial ECs for the fuzzy inference method. There is a trade-off between computational time and accurately estimated ECs, since the hybrid method needs more time to directly find out accurate ECs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call