Abstract

In this paper, a discrete-time inverse optimal control is applied to a three-phase linear induction motor (LIM) in order to achieve trajectory tracking of a position reference. An online neural identifier, built using a recurrent high-order neural network (RHONN) trained with the Extended Kalman Filter (EKF), is employed in order to model the system. The control law calculates the input voltage signals which are inverse optimal in the sense that they minimize a cost functional without solving the Hamilton-Jacobi-Bellman (HJB) equation. Particle Swarm Optimization (PSO) algorithm is employed in order to improve identification and control performance. The applicability of the proposed control scheme is illustrated via simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.