Abstract

This study proposes the control of a three-level NPC converter applied in a PV-FC hybrid generation system based on discrete-time integral sliding mode control (DISMC) combined with the particle swarm optimization (PSO) technique. First, the comprehensive depiction and modeling of the system's main components are initially presented. Then, the controller's detailed design procedure is given.  The sliding manifold is designed to have a fast dynamic response, and its stability analysis is verified using the Lyapunov direct method. Next, the optimization procedure is introduced to calculate the optimal values of the DISMC gains. Furthermore, a power management strategy is examined within the proposed control system to maximize the utility of the power produced by the hybrid system; the control is done through the designed PSO-DISMC to allow decoupled control of the active and reactive powers in two distinct modes of operation (the feeder-flow control (FFC) and the unit-power control (UPC) modes). The simulation of the approach is conducted in MATLAB/Simulink, and the findings demonstrate the effectiveness and robustness of the proposed control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call