Abstract

This paper discusses a particle swarm optimization (PSO)-based motion-planning algorithm in a multiple-vehicle system that minimizes the traveling time of the slowest vehicle by considering, as constraints, the radial and tangential accelerations and maximum linear velocities of all vehicles. A class of continuous-curvature curvesthree-degree Bezier curvesis selected as the basic shape of the vehicle trajectories to minimize the number of parameters required to express them mathematically. In addition, velocity profile generation using the local minimum of the radial-accelerated linear velocity profile, which reduces the calculation effort, is introduced. A new PSO-based search algorithm, called “particle-group-based PSO,” is introduced to find the best combination of trajectories that minimizes the traveling time of the slowest vehicle. A particle group is designed to wrap a set of particles representing each vehicle. The first and last two control points characterizing a curve are used as the state vector of a particle. Simulation results demonstrating the performance of the proposed method are presented. The main advantage of the proposed method is its minimization of the velocity-profile-generation time, and thereby, its maximization of the search time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.