Abstract
Mechanisms promoting the evolution of cooperation in two-player, two-strategy evolutionary games have been discussed in great detail over the past decades. Understanding the effects of repeated interactions in multi-player with multi-choice is a formidable challenge. This paper presents and investigates the application of co-evolutionary training techniques based on particle swarm optimization (PSO) to evolve cooperation for the iterated prisoner’s dilemma (IPD) game with multiple choices in noisy environment. Several issues will be addressed, which include the evolution of cooperation and the evolutionary stability in the presence of multiple choices and noise. First is using PSO approach to evolve cooperation. The second is the impact of noise on the evolution of cooperation is examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Science and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.