Abstract

본 논문에서는 Particle Swarm Optimization(PSO) 기법을 이용한 이족보행로봇의 보행 계획 방법을 제안한다. 이족보행로봇의 보행 프리미티브를 기반으로 PSO의 학습 및 군집 특성을 이용하여 장애물이 있는 2차원 작업공간에서 보행 계획 방법을 설계하였다. 먼저 PSO의 탐색알고리즘을 사용하여 장애물을 회피하는 실행 가능한 보행 프리미티브들의 순서를 찾아서 보행 경로를 생성하고, 탐색된 경로를 바탕으로 보행 걸음수와 이동 거리를 최적화 하는 경로 최적화 알고리즘을 제안하였다. 제안된 보행 계획방법은 다양한 구성의 장애물을 포함한 작업환경에서 모의실험을 통하여 발걸음 탐색 시간이 줄고 최적화된 보행 경로를 생성하는 것을 검증하였다. In this paper, we propose a footstep planning method of biped robot based on the Particle Swarm Optimization(PSO). We define configuration and locomotion primitives for biped robots in the 2 dimensional workspace. A footstep planning method is designed using learning process of PSO that is initialized with a population of random objects and searches for optima by updating generations. The footstep planner searches for a feasible sequence of locomotion primitives between a starting point and a goal, and generates a path that avoids the obstacles. We design a path optimization algorithm that optimizes the footstep number and planning cost based on the path generated in the PSO learning process. The proposed planning method is verified by simulation examples in cluttered environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.