Abstract

A key concept in drug design is how natural variants, especially the ones occurring in the binding site of drug targets, affect the inter-individual drug response and efficacy by altering binding affinity. These effects have been studied on very limited and small datasets while, ideally, a large dataset of binding affinity changes due to binding site single-nucleotide polymorphisms (SNPs) is needed for evaluation. However, to the best of our knowledge, such a dataset does not exist. Thus, a reference dataset of ligands binding affinities to proteins with all their reported binding sites’ variants was constructed using a molecular docking approach. Having a large database of protein–ligand complexes covering a wide range of binding pocket mutations and a large small molecules’ landscape is of great importance for several types of studies. For example, developing machine learning algorithms to predict protein–ligand affinity or a SNP effect on it requires an extensive amount of data. In this work, we present PSnpBind: A large database of 0.6 million mutated binding site protein–ligand complexes constructed using a multithreaded virtual screening workflow. It provides a web interface to explore and visualize the protein–ligand complexes and a REST API to programmatically access the different aspects of the database contents. PSnpBind is open source and freely available at https://psnpbind.org.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.