Abstract
Let Π be a projective plane of order n admitting a collineation group G≅PSL(2, q) for some prime power q. It is well known for n=q that Π must be Desarguesian. We show that if n<q then only finitely many cases may occur for П, all of which are Desarguesian. We obtain some information in case n=q2 with q odd, notably that G acts irreducibly on П for q≠3, 5, 9.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.