Abstract

Bacterial biofilms are surface-associated, multicellular, morphologically complex microbial communities1-7. Biofilm-forming bacteria such as the opportunistic pathogen7-10 Pseudomonas aeruginosa are phenotypically distinct from their free-swimming, planktonic counterparts. Much work has focused on factors impacting surface adhesion and it is known that P. aeruginosa secretes the Psl exopolysaccharide, which promotes surface attachment by acting as a ‘molecular glue’11-15. However, how individual surface-attached bacteria self-organize into microcolonies, the first step in communal biofilm organization, is not well understood. Here, we identify a new role for Psl in early biofilm development using a massively parallel cell-tracking algorithm to extract the motility history of every cell on a newly colonized surface via a search-engine based approach16. By combining these techniques with fluorescent Psl staining and computer simulations, we show that P. aeruginosa deposits a trail of Psl as it moves on a surface, which influences the surface motility of subsequent cells that encounter these trails and thus generate positive feedback. Both experiments and simulations indicate that the web of secreted Psl controls the distribution of surface visit frequencies, which can be approximated by a power law. This Zipf's Law17 indicates that the bacterial community self-organizes in a manner analogous to a capitalist economic system18, a ‘rich-get-richer’ mechanism of Psl accumulation that results in a small number of ‘elite’ cells extremely enriched in communally produced Psl. Using engineered strains with inducible Psl production, we show that local Psl levels determine post-division cell fates and that high local Psl levels ultimately allow ‘elite’ cells to serve as the founding population for initial microcolony development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call