Abstract
MotivationSingle-cell RNA sequencing (scRNA-seq) enables transcriptome-wide gene expression measurements at single-cell resolution providing a comprehensive view of the compositions and dynamics of tissue and organism development. The evolution of scRNA-seq protocols has led to a dramatic increase of cells throughput, exacerbating many of the computational and statistical issues that previously arose for bulk sequencing. In particular, with scRNA-seq data all the analyses steps, including normalization, have become computationally intensive, both in terms of memory usage and computational time. In this perspective, new accurate methods able to scale efficiently are desirable.ResultsHere, we propose PsiNorm, a between-sample normalization method based on the power-law Pareto distribution parameter estimate. Here, we show that the Pareto distribution well resembles scRNA-seq data, especially those coming from platforms that use unique molecular identifiers. Motivated by this result, we implement PsiNorm, a simple and highly scalable normalization method. We benchmark PsiNorm against seven other methods in terms of cluster identification, concordance and computational resources required. We demonstrate that PsiNorm is among the top performing methods showing a good trade-off between accuracy and scalability. Moreover, PsiNorm does not need a reference, a characteristic that makes it useful in supervised classification settings, in which new out-of-sample data need to be normalized.Availability and implementation PsiNorm is implemented in the scone Bioconductor package and available at https://bioconductor.org/packages/scone/.Supplementary information Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.