Abstract

Photosystem II (PSII) is a membrane-bound protein complex that oxidizes water to produce energized protons, which are used to built up a proton gradient across the thylakoidal membrane in the leafs of plants. This light-driven reaction is catalyzed by withdrawing electrons from the Mn4CaO5-cluster (Mn-cluster) in four discrete oxidation steps [S1−(S4/S0)] characterized in the Kok-cycle. In order to understand in detail the proton release events and the subsequent translocation of such energized protons, the protonation pattern of the Mn-cluster need to be elucidated. The new high-resolution PSII crystal structure from Umena, Kawakami, Shen, and Kamiya is an excellent basis to make progress in solving this problem. Following our previous work on oxidation and protonation states of the Mn-cluster, in this work, quantum chemical/electrostatic calculations were performed in order to estimate the pKa of different protons of relevant groups and atoms of the Mn-cluster such as W2, O4, O5 and His337. In broad agreement with previous experimental and theoretical work, our data suggest that W2 and His337 are likely to be in hydroxyl and neutral form, respectively, O5 and O4 to be unprotonated. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.