Abstract
The aim of this study was to examine the effects of humic substances on fermentation characteristics and microbial communities using the rumen stimulation technique (RUSITEC). The experiment was conducted as a completely randomized design over a 15-d period with 3 treatments duplicated in 2 runs with 2 replicates per run. Treatments consisted of a control diet (forage:concentrate; 60:40) without humic substances or humic substances added at either 1.5 g/d or 3.0 g/d. Dry matter disappearance, pH, fermentation parameters and gas production were measured from d 8 to 15. Samples for microbial profiling were taken on d 5, 10 and 15 using the digested feed bags for solid-associated microbes (SAM) and fermenter fluid for liquid-associated microbes (LAM). The inclusion of humic substances had no effect (P ≥ 0.19) on DM disappearance, pH or the concentrations of VFA. The production of NH3 was linearly decreased (P = 0.04) with increasing levels of humic substances in the diet. There was no effect (P ≥ 0.43) of humic substances on total gas, CO2 or CH4 production. The number of OTUs was significantly reduced in the 3.0 g/d treatment compared to the control on d 10 and 15; however, the microbial community structure was largely unaffected (P > 0.05). In the SAM samples, the genera Lachnospiraceae XPB1014 group, Succiniclasticum, and Fibrobacter were reduced in the 3.0 g/d treatment and Anaeroplasma, Olsenella, and Pseudobutyrivibrio were increased at d 5, 10, or 15. Within the LAM samples, Christensenellaceae R-7 and Succiniclasticum were the most differentially abundant genera between the control and 3.0 g/d HS treatment samples (P < 0.05). This study highlights the potential use of humic substances as a natural feed additive which may play a role in nitrogen metabolism without negatively affecting the ruminal microbiota.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.