Abstract

Dynamic service function chains (SFC) are enabled by network function virtualization on general purpose servers. The emergence of programmable data planes (PDP) has offered a new way for the deployment of SFC. However, the implementation of network functions is constrained by resource limitations in PDPs (e.g., compute and memory resource). Moreover, most of existing works do not consider the optimization of state information (e.g., registers), which is essential for stateful network functions. In this paper, we propose pSFC which provides a fine-grained SFC deployment scheme in the PDP to tackle the problem. We first model network functions as control flow graphs (CFG) and the process of deployment as a one big switch (OBS) problem, and then propose an ILP (Integer Linear Programming) model for resource optimization for the OBS problem, which is NP-hard. To solve this problem efficiently, pSFC first composes multiple SFCs for eliminating redundant resources, decomposes the compound CFG based on the resource limitation per stage, and finally maps OBS into the substrate network. We have implemented pSFC in both bmv2 software switch and P4 hardware switch (i.e., Intel Tofino). Evaluation shows that pSFC reduces switch costs 45.7% and average latency 15% while providing the correctness of the process of SFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.