Abstract
In Saccharomyces cerevisiae, pseudouridine formation in the middle position of the tRNA(Tyr) anticodon (psi 35) is dependent on the presence of the intron in the tRNA(Tyr) gene (Johnson and Abelson, Nature 302:681-687, 1983). Drosophila melanogaster tRNA(Tyr) genes contain introns of three size classes: 20 or 21 base pairs (bp) (six genes), 48 bp (one gene), and 113 bp (one gene). As in yeast, removal of the intron led to loss of psi 35 in the anticodon when transcription was assayed in Xenopus laevis oocytes. All Drosophila intron sizes supported psi 35 formation. The same results were obtained with the homologous X. laevis tRNA(Tyr) genes containing introns of 12 or 13 bp or with a deleted intron. The introns of yeast (Nishikura and DeRobertis, J. Mol. Biol. 145:405-420, 1981), D. melanogaster, and X. laevis tRNA(Tyr) wild-type genes, while they all supported psi 35 synthesis, did not share any consensus sequences. As discussed, these results, taken together, suggest that for appropriate function the psi 35 enzyme in the X. laevis oocyte needs the presence of an unqualified intron in the tRNA gene and a tRNA(Tyr)-like structure in the unprocessed tRNA precursor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.