Abstract
BackgroundHeart failure (HF) is the fastest growing form of cardiovascular disease both nationally and globally, underlining a need to phenotype subclinical HF intermediaries to improve primary prevention. ObjectivesWe aimed to identify novel metabolite associations with left ventricular (LV) remodeling, one upstream HF intermediary, among a community-based cohort of individuals. MethodsWe examined 1052 Bogalusa Heart Study participants (34.98% African American, 57.41% female, aged 33.6–57.5 years). Measures of LV mass and relative wall thickness (RWT) were obtained using two-dimensional-guided echocardiographic measurements via validated eqs. LV mass was indexed to height2.7 to calculate left ventricular mass index (LVMI). Untargeted metabolomic analysis of fasting serum samples was conducted. In combined and ethnicity-stratified analyses, multivariable linear and multinomial logistic regression models tested the associations of metabolites with the continuous LVMI and RWT and categorical LV geometry phenotypes, respectively, after adjusting for demographic and traditional cardiovascular disease risk factors. ResultsPseudouridine (B = 1.38; p = 3.20 × 10−5) and N-formylmethionine (B = 1.65; 3.30 × 10−6) were significantly associated with LVMI in the overall sample as well significant in Caucasians, with consistent effect direction and nominal significance (p < .05) in African Americans. Upon exclusion of individuals with self-report myocardial infarction or congestive HF, we similarly observed a 1.33 g/m2.7 and 1.52 g/m2.7 higher LVMI for each standard deviation increase in pseudouridine and N-formylmethionine, respectively. No significant associations were observed for metabolites with RWT or categorical LV remodeling outcomes. ConclusionsThe current analysis identified novel associations of pseudouridine and N-formylmethionine with LVMI, suggesting that mitochondrial-derived metabolites may serve as early biomarkers for LV remodeling and subclinical HF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.