Abstract

To assess the potential risks associated with the environmental exposure of β-lactam antibiotics (BLAs), the monitoring of the occurrence, distribution, and fate of these emerging contaminants in the environment is required. Herein, we demonstrate a molecularly imprinted solid-phase extraction (MISPE) method for selective and reliable screening of trace BLAs in river and tap water. By developing a low-temperature photopolymerization, highly selective molecularly imprinted polymers (MIPs) for five BLAs (penicillin G, amoxicillin, ampicillin, nafcillin and mezlocillin) were synthesized. Nafcillin was chosen as a pseudo template to make the MIP sorbent (Nafc-MIP), which was used in pseudo-template MISPE for preconcentration of the other four BLAs from river and tap water. The application of pseudo-template MISPE overcomes the template bleeding, which significantly elevates the sample background and restricts the application of MIP for detection of the target BLA below 2 μg/L. The average recoveries of BLAs are in the range of 60–90% when Nafc-MIP was adopted as the selective MISPE sorbent. The developed method was validated, and applied to the screening of trace β-lactam antibiotics in river and tap water. The linearity of the calibration curve for each BLA was observed over the range of 0.1–20 μg/L ( r > 0.998). The β-lactam antibiotics were found within the range of 0–9.56 μg/L in river water at the downstream of antibiotics manufacturers, and none were detected in the tap water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call