Abstract

Pseudostellaria heterophylla is a Chinese medicine and healthy edible that is widely used to for its immunomodulatory, antioxidant, antidiabetic and antitussive properties. However, the potential function of P. heterophylla in intestinal microecology remains unclear. In this study, we investigated the impact of P. heterophylla on immune functions and evaluated its potential to regulate the gut microbiota and metabolome. The results showed that P. heterophylla significantly increased the content of red blood cells, total antioxidant capacity and expression of immune factors, and decreased platelet counts when compared to the control under cyclophosphamide injury. In addition, P. heterophylla altered the diversity and composition of the gut bacterial community; increased the abundance of potentially beneficial Akkermansia, Roseburia, unclassified Clostridiaceae, Mucispirillum, Anaeroplasma and Parabacteroides; and decreased the relative abundance of pathogenic Cupriavidus and Staphylococcus in healthy mice. Metabolomic analyses showed that P. heterophylla significantly increased the content of functional oligosaccharides, common oligosaccharides, vitamins and functional substances. Probiotics and pathogens were regulated by metabolites across 11 pathways in the bacterial-host co-metabolism network. We demonstrated that P. heterophylla increased the abundance of probiotics and decreased pathogens, and further stimulated host microbes to produce beneficial secondary metabolites for host health. Our studies highlight the role of P. heterophylla in gut health and provide new insights for the development of traditional Chinese medicine in the diet. © 2024 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.